Development of gluconeogenesis from dihydroxyacetone in rat hepatocytes during a feeding cycle and starvation.
نویسندگان
چکیده
Pyruvate kinase activity and the rates of gluconeogenesis and glycolysis in rat hepatocytes were evaluated by production of glucose and lactate + pyruvate from dihydroxyacetone during a feeding cycle or progressive starvation. In fed rats, during daylight (low food intake) and until darkness, gluconeogenesis progressively increased and glycolysis decreased slightly, but gluconeogenesis never exceeded glycolysis. During nocturnal feeding, gluconeogenesis and glycolysis returned to their morning rates. After 8 h starvation, an equal proportion of dihydroxyacetone was converted into glucose and into lactate + pyruvate. When glycogen was depleted (11 h of starvation), gluconeogenesis was maximal and glycolysis minimal. In fed and starved rats, the concentration of fructose 1,6-bisphosphate was the same. The activity ratio of pyruvate kinase (ratio of velocity at 0.5 mM-phosphoenolpyruvate to the maximum catalytic activity obtained with 4mM-phosphoenolpyruvate) was high in crude extracts of cells incubated with dihydroxyacetone and low in (NH4)2SO4-treated extracts, but remained unchanged during the whole experiment. There was no correlation between the rates of gluconeogenesis and glycolysis from dihydroxyacetone and the activity ratio of pyruvate kinase.
منابع مشابه
Mechanisms of increased gluconeogenesis from alanine in rat isolated hepatocytes after endurance training.
This work aimed at further investigating the mechanisms by which liver gluconeogenic capacity from alanine is improved after training in rats, with an isolated hepatocyte model. Compared with controls in hepatocytes from trained rats incubated with gluconeogenic precursors (20 mM), the glucogenic flux (J(glucose)) was increased by 64% from alanine (vs. 21% for glycerol, 18% for lactate-pyruvate...
متن کاملEffects of benfluorex on fatty acid and glucose metabolism in isolated rat hepatocytes: from metabolic fluxes to gene expression.
The effects of benfluorex and two of its metabolites (S 422-1 and S 1475-1) on fatty acid and glucose metabolic fluxes and specific gene expression were studied in hepatocytes isolated from 24-h fasted rats. Both benfluorex and S 422-1 (0.1 or 1 mmol/l) reduced beta-oxidation rates and ketogenesis, whereas S 1475-1 had no effect. At the same concentration, benfluorex and S 422-1 were more effic...
متن کاملRole of fructose 2,6-bisphosphate in the control by glucagon of gluconeogenesis from various precursors in isolated rat hepatocytes.
Hepatocytes from overnight-starved rats were incubated with 1-20 mM-fructose, -dihydroxyacetone, -glycerol, -alanine or -lactate and -pyruvate with or without 0.1 microM-glucagon. The production of glucose and lactate was measured, as was the content of fructose 2,6-bisphosphate. The concentrations of fructose (below 5 mM) and dihydroxyacetone (above 1 mM) that gave rise to an increase in fruct...
متن کاملMetabolic consequences of pyruvate kinase inhibition by oxalate in intact rat hepatocytes.
The effects of oxalate on glycolysis and glucose production from trioses were studied in hepatocytes isolated from fed and fasted rats. 1--In cells from fed rats oxalate inhibited glycolysis at the pyruvate kinase step, as shown by an increased phosphoenolpyruvate concentration, a decreased lactate and pyruvate production and a reduction of the glycolytic flux estimated by the rate of detritiat...
متن کاملCatecholamine and vasopressin stimulation of gluconeogenesis from dihydroxyacetone in the presence of atractyloside.
Atractyloside inhibited gluconeogenesis from dihydroxyacetone in hepatocytes from fasted rats and increased lactate synthesis. In the presence of atractyloside, lactate/pyruvate and beta-hydroxybutyrate/aceto-acetate ratios were increased and the accumulation of Fru-2,6-P2 was prevented. In the absence of atractyloside, gluconeogenesis from dihydroxyacetone was stimulated by dibutyryl-cAMP and,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 218 3 شماره
صفحات -
تاریخ انتشار 1984